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ABSTRACT

The goal of this project is the development of a numerical code that provides statistical

models of the sky distribution of gamma-ray lines due to the production of radioactive

isotopes by ongoing Galactic nucleosynthesis. We are particularly interested in quasi-

steady emission from novae, supernovae, and stellar winds, but continuum radiation and

transient sources must also be considered. We have made significant progress during the

first half period of this project and expect the timely completion of a code that can be

applied to OSSE Galactic plane survey data.

REPORT

a) Nucleosynthesis

For the nuclear species considered in this study, the so-called a-process is of particular

interest. CO-I Woosley and his graduate student R. Hoffman have carrried out extensive

simulations of parametrized explosive synthesis for material that is initially in nuclear sta-

tistical equilibrium and is cooled so rapidly that the freeze-out from equilibrium occurs in

the presence of a large helium abundance. The physics of this a-process and the result-

ing nuclear yields is described in Woosley and Hoffman (1992). The particular aspects of

44Ti are discussed in Woosley and Hoffman (1991). The results of these recent nucleosyn-

thesis studies (and other not mentioned here) have been incorporated in the code under

development.

b) Galactic Models

The current status of the code includes only smooth Galactic features (spiral arms

etc will be included later), and we have sofar only included supernovae in the simulation.

Spatial distributions and rates of supernovae of various kinds have been obtained from

recent extra-galactic surveys. We have included a dust extinction model of the Galaxy to

simulate the historic supernova rate in order to constrain model parameters. Nuclear yields

have been provided by CO-I Woosley. We have used this code to constrain the Galactic

supernova rate from the absence of gamma-ray line emission due to the decay of 44Ti. The

code in its current state is already superior to that employed by Mahoney etal. (1990) for

a similar study. The results of this test application have been presented at the 2nd GRO

Science Workshop (Hartmann etal. 1991) and a more detailed paper is in preparation for
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c) Photon Sky Maps

Ultimately, we will use the predicted gamma-ray fluxes from the superposition of

many Galactic sources to model the integrated photon flux on the sky. To become familiar

with the data analysis and interpretation needs for this step, we have installed the COS-B

database on Clemson workstations and developed the data IO and image analysis software

necessary to work with this database. Our approach is based on a smooth photon probabil-

ity map rather than a direct photon count map. This is motivated by the natural smearing

of photon arrival directions by gamma-ray detectors. We hope to be able to employ our

techniques in conjunction with the OSSE plane survey and the presentation/analysis of

the simulated maps produced by our code. As a by-product of this work, we have found

a way to enhance the signal-to-noise ratio in searches for pulsating gamma-ray sources su-

perimposed on a strong background. The results of this aspect of our diffuse glow project

were presented at the 2nd GRO Science Workshop (Brown, Clayton, and Hartmann 1991).

d) Transient Sources

In addition to research directly aimed at developing the gamma-ray mapping code for

line emission from ongoing nucleosynthesis, grant NAG 5 1578 also provided partial support

for the PI's research on transient Galactic gamma-ray emission. In collaboration with Dr.

David Band at UCSD, the PI investigated the effect of ionizing radiation from burst

sources on their environment. The results of this study were presented at the Huntsville

gamma-ray burst workshop and a paper was accepted for publication in ApJ (Band and

Hartmann 1991, 1992). In collaboration with Dr. Boyd (Ohio State University) Galactic

continuum and line emission induced by transient gamma-ray emission was investigated.

Possible secondary signals arising from interactions of primary photons from a burster with

surrounding material can result from pair annihilation or from the decay of unstable nuclei

that were created by the photoerosion process. The results of this work were presented

at the Huntsville burst workshop and an ApJ paper on this subject is in preparation

(Fencl, Boyd, and Hartmann 1991, 1992). Whether gamma-ray bursts are associated with

Galactic neutron stars has become another Great Debate. The Clemson group has carried

out statistical studies involving Galactic neutron stars and also calculated more general

geometric models, as well as cosmological models. The findings of this work were reported

at the Huntsville workshop (Hartmann etal 1991) and a paper suggesting that bursts come

from Pop II neutron stars in the Galactic halo has been submitted to Nature (Hartmann

1991). In light of the recent BATSE results, perhaps only some bursts are associated with

neutron stars, evidenced by their cyclotron lines and other circumstantial evidence. In that

case, bursts may be due to glitches in the neutron star rotation. We have placed an upper

limit on the energy conversion efficiency of such models from observations with Phobos

detectors (Hartmann, Hurley, and Niel 1992). The debate on the distance to gamma-

ray bursts depends to a large extent on the interpretation of the BATSE finding of an

isotropic sky distribution together with an inhomogenous space distribution as measured

by the V/Vm,_ test. In collaboration with Hurley (UCB) and Gonzalez (UCSC) a refined

analysis tool was developed that takes counting noise errors into account (Hartmann,

Gonzalez, and Hurley 1991).



e) Future Work

We have completed the developmentof the basic framework for the code and have
demonstrated its current usewith a study of the Galactic emission from 44Ti (Hartmann
etal. 1991). We are now including more isotopes, more specific sources (novae, WR
and AGB stars), and the effectsof spiral structure. We need to develop more graphical
presentation tools for the photon sky maps. Clemsongraduatestudent S.Guha hasbecome
involved in all aspectsof our diffuseglow project and is expected to contribute greatly to
the development of this tool. Under NRA 91-OSSA-22the grant team has submitted
a GRO Phase II "renewal" proposal for this project and in collaboration with Dr. M.
Leising (Clemson) the PI hasalso submitted a specificobserving proposal to OSSE aimed

at determining the importance of spiral arm "fine structure" that we plan to model with

the next version of the code. To improve further our nucleosynthesis prescriptions for WR

stars we will collaborate with Dr. M. F. E1 Eid (Goettingen Observatory, FRG), who will

spend the spring 1992 semester at Clemson.
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Abstract

Most Galactic supernovae are hidden from our view due to severe extinction in the
Galactic plane. In the "/-ray band the Galaxy is almost transparent so that we could detect
supernovae that are obscured. 44Ti is among the potentially detectable isotopes in supernova
ejecta. Surveys carried out with the HEAO 3 experiment and 7-ray detectors aboard the
Solar Maximum Mission (SMM) have not detected "/-ray lines expected from the decay
chain 44Ti _ 44Sc _ 44Ca. These observations thus constrain the rates and nucleosynthesis

of supernovae. We perform Monte Carlo simulations of the expected "r-ray signatures of
Galactic supernovae of all types to estimate the significance of the lack of a "/-ray signal
due to supernovae occuring during the last millenium. Using recent estimates of the nuclear

yields we determine mean Galactic supernova rates consistent with the historic supernova
record and the 7-ray limits. Another objective of'these calculations of Galactic supernova
histories is their application to surveys of diffuse Galactic 7-ray line emission.

1 Introduction

Detection of "),-ray line emission from ongoing Galactic nucleosynthesis is one of the major

observational goals of */-ray astronomy. We consider the signal from the decay 44Ti --, 44Sc

44Ca. Measurements of the 44Ti half-life prior to 1965 implied tl/2 _< 50 years, but recent
Brookhaven measurements suggest a much longer half-life of 66.6 years (Adelberger & Harbottle

1990). Here we adopt the intermediate half-life of 54.2 years (Frekers ct al. 1983), corresponding

to r = 78.2 years, which was also employed by Mahoney et al. (1991). Pinning down the correct

value remains an important objective in nuclear astrophysics. Because of this short life-time,

detection of a "),-ray signal from 44Ti involves either very recent or very near supernovae.
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Figure 1:

The decay of 44Ti generates three 7-ray photons with energies of 78.4 keV, 67.9 keV, and

1.157 MeV. The resulting line flux at earth is

F7 ,_ 1 x 10 -2 M-4 exp(-t/78.2 yrs) D-2(kpc) photons cm-2s -1 ,

where M-4 is the ejected 44Ti mass in units of 10 -4 MO The detectability of such emission

from recent supernovae in our Galaxy and perhaps from a few older but nearby remnants make

this nucleus a prime ")'-ray target (Figure 1). It is clear, however, that the search for 44Ti line

emission from previously undetected Galactic supernovae deals with the few events of the past

couple of centuries, so that the interpretation of line detection, or lack thereof, is statistical in
nature. This is similar to the situation of 22Na, and our Monte Carlo analysis is conducted in

the spirit of Higdon and Fowler's (1987) analysis of 22Na detectability from novae.

Searches for 44Ti line emission have been carried out using the high-resolution ")'-ray spec-

troscopy experiment on HEAO 3 (Mahoney et al. 1991) and the 7-ray spectrometer aboard the

SMM satellite (Leising & Share 1991). No signal was detected with either instrument. Mahoney

et al. (1991) used the HEAO 3 limit to constrain the combination of supernova rate and mass

of 44Ti ejected per event, but considered the relevant supernovae to be of Type Ia and ignored

constraints from the optical signature of these events. Current nucleosynthesis estimates for

44Ti suggest that in fact supernovae involving massive stars (Type Ib and II) may dominate

the production of this isotope. We take a somewhat different approach and utilize current yield

estimates (and their uncertainties) to constrain exclusively the mean Galactic supernova rate.



2 Yields and Sites

To achieve full solar production of 57Fe and 44Ca their 7-ray emitting progenitors S?Ni and

44Ti must be produced in environments that guarantee a significant contribution from the

so called "alpha-rich freeze-out" (Woosley, Arnett, & Clayton 1973). This component can

be expected when low density matter falls out of nuclear statistical equilibrium (NSE) while

being cooled so rapidly that free alpha particles have insufficient time to reassemble back into

more massive nuclei. In contrast to normal freezeout from NSE at high densities, the large

mass fraction of surviving alpha particles drastically alters the resulting nucleosynthesis. It is

generally believed that alpha-rich freeze-out must be invoked to explain solar abundances of

several isotopes, including 5_Fe, 59Co, ss,6°,61,62Ni, and 64Zn (Woosley 1986). We utilize the

fact that the synthesis of 44Ti and STNi occurs in similar, if not the same, astrophysical sites,

and take advantage of observations of SN 1987A to estimate 44Ti yields. Mahoney et al. (1991)

treated the titanium yield as a free parameter and assumed it to be the same for all events.

The bolometric luminosity of SN 1987A at late times is dominated by the radioactivity

of 44Ti (e.g., Woosley, Pinto, & Hartmann 1989). The abundance of 44Ti is sensitive to pre-

explosive details of stellar evolution as well as the explosion mechanism. For SN 1987A Kumagai

et al. (1989) and Woosley & Pinto (1988) estimate Ti production near 10 -4 M® . This result

is uncertain by at least a factor of two. Parametrized nucleosynthesis studies (Woosley &

Hoffman 1991: WH) can also be used to constrain production of 44Ti. Assuming that S6Ni is

the dominant constituent of iron group elements ejected in SNII and using a conservative lower

limit on the neutron enrichment parameter _?gl0 -3, the parametrized synthesis calculations

constrain the ratio rs_ = X(STNi)/X(S6Ni). To avoid overproduction of SSNi by a factor of 5

or more, WH finds rs_ g 2r57® • The lower limit on _? corresponds to a lower limit rs7 _ 0.3

r570 in the case that an a-rich freeze-out does not occur. For the most realistic _ values and a

modest a-rich freeze-out WH find rsT _ 0.7 r57® •

Production of 44Ti and STCo is dominated by stellar zones that have experienced some

alpha-rich freeze-out. Thus, the limits on S_Co also provide a constraint on the 44Ti yields.

WH find that a Ti production ratio P44 = 44Ti/S6Fe close to solar (P44® ~ 1.2×10 -3) occurs

for a variety of conditions and that the upper limit on rs7 restricts P44 to less than twice solar.

Recent observations of the bolometric light curve of SN 1987A suggest r57 ,-_5 (Suntzeff et al.

1991), which implies copious co-production of 44Ti (P44 "¢2P440 ) in Type II supernovae, but

the uncertainties in modeling the bolometric lightcurve are still very large. Dynamic simulations

of explosive nucleosynthesis (Hashimoto et al. 1989; Kumagai et al. 1989; Woosley, Pinto, &

Weaver 1988; Woosley 1991) estimate P44 _ 1.5-2.5 P440, so that a typical Type H supernova

might eject 10-4M0 . However, these simulations are not yet realistic, because they assume

either a piston or instantaneous energy deposition. We randomly select the ejected 44Ti mass

in SNII from Mcj ,,_ _ P440 Mso, where ( is randomly chosen between 0.5 and 2.0, and the

ejected mass of 56Fe varies between 2×10-3M® and 0.3 M 0 for stars with initial mass between

10 M® and 35 M® . The initial mass was selected from a Salpeter IMF by another random

number. The same prescription is used for SNIb, but the amount of ejected 56Fe is kept fixed at

0.3 M O , because not enough SNIb have been observed to estimate their intrinsic spread in iron

production. For SNIa we randomly draw an ejected iron mass between 0.25 M® and 0.75 M® ,

and select _ between 0.03 and 0.08. The titanium synthesis in these exploding carbon-oxygen

white dwarfs is not very well known, but recent models of delayed detonations (DD) support



the ( range employed here. In DD models of Type Ia supernovae substantial production of

intermediate mass isotopes (0, Mg, Si, Ca..) occurs because the detonation wave propagates

through low density matter in the pre-expanded white dwarf envelope. Estimates of the yields

of isotopes in this mass range are sensitive to the uncertain transition density where the initial

deflagration turns into a detonation.
The rate of SNIa is about a factor 10 smaller than that of supernovae involving massive stars

(11o & II). Thus, the Galactic nucleosynthesis of 44Ti could be dominated by SNII and SNIb,

but from the point of view of 7-ray searches for individual Galactic events only the product

¢P44® M56 matters. Although uncertain, the values discussed above clearly indicate that one

must include all supernova classes in the analysis.

3 Event Distribution

3.1 Spatial Distributions

The standard scenarios for Type Ia supernovae involve accreting white dwarfs, which motivates

the use of distribution modds derived for novae (Higdon & Fowler 1987; Mahoney et al. 1991).
The Galactic nova distribution is not well known because of severe extinction corrections. To

alhviate this problem one relies on nova surveys of M31 where sample completeness is much

higher (e.g., Ciardullo et al. 1987). From these observations one expects contributions from

two distinct populations: disk and spheroid. We follow Higdon & Fowler (1987) who generate

Monte Carlo representations of these populations from integral probability distributions for an

axissymmetric disk and a spherically symmetric bulge component. The observations of M31

seem to suggest that the nova rate traces the blue light distribution. Using the Bahcall-Soneira

Galaxy modal Mahoney et al. (1991) argue that the fraction of SNIa occuring in the spheroid is

about 1/6. The remaining two classes of events are thought to be associated with massive stars

and thus follow a Pop I spatial distribution. We assume that birth places are exponentially

distributed in height above the plane with a scale length of 100 pc. Ignoring spiral structure

we assume smooth radial birth functions that are either constant within some radius at, fall

off exponentially with distance from the Galactic center (with scale length at), or are ring-like

p(r) cx exp ((r - r0)2/ar2), where H2 observations suggest that r0 ,_ 5 kpc.

3.2 Supernova Rates

Instead of treating the total Galactic rate of each supernova class as a free parameter, we fix

the relative rates based on observations of external galaxies and vary the total rate. Relative

supernova rates are sensitive to the type of the host galaxy (e.g., Tammann 1991). The Hubble

type of the Milky Way is not accurately known, but is most likely between Sbc and Sd, so that

the observations suggest the following breakdown (Ia:Ib:II) = (1:1.6:8) (Tammann 1991). We

thus assume that a fraction Flu '_ 0.09 of all events is of type Ia. Similarly, the fraction of type

Ib events among supernovae involving massive stars is Fib "_ 0.16. These values are used to

randomly assign an event class.



4 Optical Constraints

4.1 The Historic Record

Supernovae are rare events in our Galaxy, only six are known to have occured during the

last millenlum. Without doubt, additional supernovae occured during that period but were

not observed because of obscuration by interstellar matter. Still, we can use these historic

events to constrain the range of acceptable mean Galactic supernova rates. Classification and

peak magnitudes of historic events are uncertain, but we follow van den Bergh (1990) for the

breakdown (Ia:Ib:II) ,,, (1:2:3). All of these events were brighter than mr = 0. We assume that

the historic record is complete above this level. On the other hand, the record of historic nova

discoveries above the same limit suggests a rather strong time dependence, suggesting that the

historic supernova record could be very incomplete as well (van den Bergh & Tammann 1991;

van den Bergh 1991b; Tammann 1991). We allow for a factor 2 in all of the above numbers, so
that there could have been a total of 12 detectable events.

Within about 4 kpc of the sun there were between 3 and 4 core collapse supernovae. From

a comparison of the total Galactic Pop I content to that within a cylinder of that radius

l_atnatunga and van den Bergh (1989) infer that the total Galactic core collapse rate is of order

6-8 events per century. This value is well above theoretical estimates based on integrating a

reasonable IMF (van den Bergh 1991a) or values derived from extragalactic evidence (Evans,

van den Bergh & McClure 1989) that give ,,, 2.2 q- 2 and 2.6 -4- 0.7, respectively. This problem

of an unexpectedly high apparent frequency of nearby supernovae has been discussed in detail

b'y van den Bergh (1990). A supernova rate as high as 1/10 yrs requires a star formation rate

that exhausts the available gas supply in the Galactic annulus of the solar neighborhood in less

than ,_ 109 yrs (van den Bergh 1991b). This is inconsistent with age estimates of the Galactic

disk (Td ,'_ 101° yrs) derived from white dwarf luminosity functions. We consider the possibility

that the actual mean supernova rate is in fact as low as indicated by extragalactic observations

and that the observed large number of local supernovae during the past millenium is just a

statistical fluctuation.

4.2 Peak Magnitudes

Observations suggest that the absolute magnitude in the B-band for Type Ia supernovae is

so well defined that we can use SNIa as standard candles (e.g., Leibundgut 1991; Branch &

Tammann 1991). We follow Leibundgut and Tammann (1990) by employing MB(maz) =

-18.3 ÷ 5 log(h), where h is the Hubble constant normalized to 100 km/s/Mpc. Furthermore,

the observations suggest that B-V ,_ 0 at maximum light. Throughout this paper we assume

h=l. Supernovae of Type Ib are fainter than SNIa (e.g., Porter and Filipenko 1987). Because of

its recent establishment as an independent class, too few events have been studied well enough

to determine accurately their peak magnitude and intrinsic spread. We therefore assume a

single value (Evans, van den Bergh, & McClure 1989) MB(maz) = -16.7 Jr 5 log(h). Stln
fainter at peak than SNIb's are Type II supernovae. We follow Tammann & SchrSder (1990)

and use MB(max) = --15.7 + 5 log(h). To include the possibility of underluminous SNII, such

as 1987A, we add uniform random fluctuations with amplitude gMB = 1.2 mag. Tammann

& SchrSder (1990) use a Gaussian distribution that rarely gives such underluminous events,

although these events could be common (e.g., Branch 1990; Schmitz & Gaskell 1988).



4.3 Extinction

Galaxy counts and photometric studiesofstellarreddening at high Galacticlatitudesimply a

polar photographicextinctionAph of about 0.25mag orlessthan 0.1 mag, respectively(Heiles

1976;Burstein & McDonald 1975).However, a carefulre-analysisofgalaxycounts (Burstein&

Heiles1978) has shown that thesedata are too noisyto distinguishbetween zeroextinctionand

a csc(b)law with an amplitude of0.25mag. The study by Bursteinand Heilesalsoshowed that

a smooth csc(b)law does not givea good representationofextinctionbecause ofthe patchiness

in the interstellardust component.

From the more reliable photometric studies of stars and globular dusters it appears that

the extinction toward the galactic poles is of order of 0.2 mag or less. An extinction of 1 mag

corresponds roughly to a hydrogen column density along the line of sight of N(HI) - 1021 cm -_

(Burstein and Heiles 1978). Extinction and optical depth, r, at some wavelength are related by

AA - 1.086 7-A. Although there still is considerable debate about the correct value of the polar

extinction, the average optical depth of the half disk in spiral galaxies is commonly assumed

to be of order rp = 0.2 (e.g., Sandage and Tamrnann 1981). However, the question whether

galaxy disks are optically thin or opaque is still debated (e.g., Disney, Davies, and Phillips

1989; Valentijn 1990). Because the radial scale length of the Galaxy is so much larger than the

vertical scale height of the dust layer (which produces the bulk of the extinction) a total optical

depth to the Galactic center may be as high as rc ,-_ 40. In the solar neighborhood the average

extinction per unit length is of order ra = 1 kpc -I (Mihalas and Binney 1981).

We employ simple extinction models that assume either constant, exponentially decaying, or

ring-like density distributions with respect to galactocentric radius and that are either constant,

exponentially decaying, or Gaussian with respect to the height above the Galactic plane. We

normalize the resulting density distribution such that the polar optical depth is exactly equal

to 7-p - 0.2. To determine the extinction correction for a particular event in the Galaxy we

first integrate along the line of sight and then add a maximally 50% correction, reflecting the

patchiness of the ISM, by felt - 7"(L)) (1 - (r - 1/2)exp(-r(L))), where r is a uniform random

variable between 0 and 1. The exponential factor reduces the fluctuations for observations of

objects with large intervening column depths. After applying extinction corrections we consider

a supernova optically detected when its apparent magnitude is brighter than my=0.

4.4 Results and Conclusions

Because of the shortlifetime of44Ti the 7-ray glow ofour Galaxy isexpected to be d_-mi-_te_

by perhaps a few recentevents. However, as Figure 1 shows, none of the known historicsu-

pernovae iseithercloseor young (orboth) enough to be detectablein the "titanium window"

(assuming standard yields).Thus one searchesfor emission from recentsupernovae that re-

mained unrecognizeddue to eitherGalacticabsorptionor gaps in sky coverageduring the past

millenium.

Mahoney ctal.(1991)searchedthrough the scan-by-scandata ofthe HEAO 3 7-ray exper-

iment. Of the three7-raylinesassociatedwith the decay of44Ti emissionat 68.9keV and 78.4

keV ismost easilydetectableby the HEAO 3 spectrometer.Mahoney ctal. (1991)searched for

fluxenhancements in 16 channels coveringthe energy range 58-90 keV. The high-resolution

spectrometeraboard HEAO 3 scanned the sky with a fieldof view of _ 30° and a period of

about 20 minutes. Mahoney etal.(1991)analyzed the scans,searchingfora point sourceat a
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Figure 2: Optical and 7-ray probabilities using the HEA O 3 flux limit.

givenlocationon the sky whose fluxismodulated by the time dependent instrument response.

Hypothetical point sourceswere assumed to be spaced 10° apart in Galacticlongitudeto as-

suremaximum instrumentalsensitivity.None ofthe resulting36 binsalong the Galacticplane

showed any significantfluxenhancement. HEAO 3 would have detecteda sourcelinefluxof ,,_

2xi0 -4 photons / cm 2 s about 99% of the time. This limitisused in thisstudy.

Leisingand Share (1991)have searchednearlyten years of data from NASA's SolarMax-

imum Mission (SMM) Gamma-Ray Spectrometer for evidenceof 7-ray lineemissionfrom the

decay of44Ti.They modeled the expected signalsresultingfrom the annual scan of the ecliptic

by SMM, consideringpointsourcesofvariousindividualundiscoveredeventswhich might eject

44Ti.They findno evidenceof Galacticemissionfrom 44Ti,and lind99% confidencelimitsof

10-4 photons cm -2 s-z forthe 1.16MeV linefrom 44Scfrom arbitrarypointsnear the Galactic

center.The limitson 1.16MeV fluxfrom longitudesnear + 90° riseto 2×10 -4 cm -2 s-z due

to the reduced sensitivityin those directions.

Using the previouslydescribed procedures for randomly generating Galactic supernova

eventsof alltypes,we perform a sufficientnumber of Monte Carlo simulationsto determine

the probabilitiesfordetectionof theseeventsin the 7-ray band and the opticalband. For a

given averagesupernova ratein the Galaxy one can then analyticallycalculatethe totalprob-

abilitiesfor such historiesto be consistentwith the observed historicsupernova record and

the lackof 7-ray detections.Figure 2 shows a typicalMonte Carlo resultfor a specificmodel

of yields,extinction,relativeSN frequencies,etc. The fullcurve "Opt" gives the probability

that a historysatisfiessimultaneouslythe historiclimitsof each supernova type (i.e.,I-2 la;

2-4 Ib;3-6 II).Individualprobabilitiesare alsoshown. The dashed curve "totalSN" givesthe
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rate and ratio Ia/(Ia+lb4-II). The labels give the logarithm of the joint probability for model

histories to match the supernova record and to avoid HEA 0 3 7-ray detection.

probability for the total number of SNe to be within the historic range (6-12), independent of

type. The upper solid curve gives the probability for non-detection of -/-rays using the HEAO-3

limit. The lower dashed curve ("Opt&HEA03") is the total combined probability for a model

to satisfy both optical and "),-ray constraints. Based on optical data alone, the particular model

shown in Figure 2 has a most likely supernova recurrence time of ,_ 18 years and the observed

Galactic historic record is reproduced in about 4% of all Monte Carlo histories (this is still an

acceptable model for Galactic supernova histories). Recurrence rates as short as 10 years yield

only a 7% probability for non-detection of 44Ti 7-ray lines. The combined optical/7-ray model

is thus severely constrained on the high frequency side, resulting in a most likely recurrence

time of ,,_ 23 years with peak probability to match both data sets of 1%. This model is thus

still acceptable. Varying the total supernova rate and the ratio Ia/(Ia+Ib+H), we perform
Monte Carlo simulations to determine the extent of the acceptable parameter space in which

the combined probabilities exceed, say, 1%. The results (Figure 3) are fully consistent with

those derived from extragalactic supernova searches, but we emphasize that 7-ray constraints

on the recurrence times clearly rule out supernova frequencies as high as 1/10 years.

A detailed paper on these simulations is in preparation. This research was supported in

part by NASA grants NAG 5-1578 and NAGW-2525, NSF grants 8813649 and 9115367, and

grants SF-ENG-48 and W-7405-ENG-48.
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Abstract

We present a nev_ method of analyzing skymap-type 7-ray data. Each photon

event is replaced by a probability distribution on the sky corresponding to the

observing instrument's point spread function. The skymap produced by this process

may be useful for source detection or identification. Most important, the use of

these photon weights for pulsar analysis promises significant improvement over

traditional techniques.

1 The Method

We have used the derived point spread function for the COS-B experiment to develop

data analysis tools with improved ratios of signal to background with applications to

source identification and searches for faint */-ray pulsars. We generate a weighted photon

probability map to enhance any significant ")'-ray signal present in the data and suppress

undesirable background fluctuations. The basis for this method can be formulated in two

equivalent ways:

a) By definition, the point spread function (PSF) of an imaging instrument describes

the redistribution of photons from a particular direction on the sky into the observed

distribution. Thus, each event may be represented as a continuous distribution of event

weights on the sky (for COS-B, the PSF vanishes for 0 > 20°).

b) Correspondingly, any location on the sky recieves some weight from each 7-ray seen

during the experiment. In other words, each observed photon has a certain probability,

given by the PSF, to have originated at that location.

Based on this concept, we smooth each photon arrival direction into an extended

probability map. When investigating a particular source location, our analysis includes

all -),-ray events through their weights at that position. To demonstrate the usefulness

of this approach we apply it to the light curve of the Crab pulsar. The extraction of a

source list from our COS-B probability map is in progress.



2 COS-B Probability Maps

The observed direction of each photon event does not correspond directly to its point of

origin on the sky. Information on the detector angular resolution is contained in the PSF

of the detector. To identify v-ray ray sources, the intrinsic fuzziness of v-ray detectors

can be included in the analysis by creating a skymap of "probability flux" rather than

"photon count flux".

The weight of a v-ray event with observed direction a for a small solid angle A0

centered on a point p is defined as

w(p; a) = PSFSR(O(a,p))AO,

where PSFSR is the point spread function per steradian. We use the PSFSR derived by

the COS-B team using the Vela pulsar (Mayer-Hasselwander 1985).

The celestial v-ray intensity, I¢, at a point on the sky (in terms of weight) is

z.y,,w(p) - Lky dflw( ANb(p) ) _ h,
I,(p) - f,k daw(H(v))

where the summations are taken over all events seen by the experiment, the w(p)'s are

the weights of the individual events, w(ANb(p)) is the weight, at p, of the instrumental

background correction for all other points on the sky, and w(H(p)) is the weight, at p, of

the exposure (in crn 2 s) for all other points on the sky. lb is the "standard" background

correction as given by the COS-B team. The units of Ic are photons/cm 2 s st.

This defines our weighted sky intensity probability distribution. We have sampled

this continuous map at .5* intervals for the whole sky. The resultant maps in the energy

ranges 50-150 MeV, 150-300 MeV, and 300-5,000 MeV are shown in figure 1.

This technique may not be ideal for some aspects of source identification. It results

in a skymap which may be "too fuzzy" since the photons are effectively convolved twice

through the PSF. That is, they are spread once in passing through the detector and again

by our technique. However, it does not make any arbitrary smoothing assumptions. A

comparison of our source list (in progress) with those resulting from other techniques

(e. g.Simpson & Mayer-Hasselwander 1987; Bloemen 1989) will be useful. For instance,

our technique finds a possible source of high intensity but low statistical weight at t =

309.5, b = -30.5 in the middle energy range (see figure) it should be instructive to see if

the maximum likelihood methods of Grenier, et al. confirm this source candidate.

3 Lightcurve of the Crab Pulsar

For analysis of periodic sources, we analyze weights vs. phase instead of counts vs. phase.

Superimposed on a background that is ,-_ uniform in space and time, the v-ray pulsar

adds a signal that is localized both in space and time. Standard analysis of v-ray phases

considers all photons within a given acceptance cone equally. Photon arrival directions
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Figure 1: Skymaps of photon weight of the COS-B observations for the energy ranges

50-150 MeV, I50-300 MeV, and 300-5,000 MeV. The photon weight distribution on the

whole sky is sampled on a grid of.5 degree spacing. Since COS-B did not observe all areas

of the sky, some regions of the map at high galactic latitudes are blank. The graymaps

used here represent intensity of photons/crn 2 s sr, with intensity increasing from black

to white. This graymap is wrapped around 10 times between the faintest and brightest

spots for better monochrome resolution. It is, essentially a grayscale "contour map". The

graymaps are assigned individually for each map (i. e. equal gray intensities on different

maps do not represent equal photon fluzes).
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TABLE 1: Signal to background
Observation PeakSignal Integrated Signal

( Std. Dev.) ( Std. Dev.)
weights counts weights counts

Crab Pulsar 43 18 176 101
1/2 Crab Pulsar 33 12 107 59

tloser to the pulsar position have a higher probability of containing the sought after
pulsed signal. Thus, by consideringboth spaceand time, we gain an added degreeof
freedomfor extracting the signal from the background.

The standard binning techniquefolds solar barycentric arrival times with the mea-
sured period characteristicsobtained from radio observations (Buccheri, et al. 1983).
Traditionally, one definesan acceptanceconearound the sourcedirection with opening
angle

0_,,_= 12.hE(McV) -'16.

Inside this cone, all photons contribute equally to the light curve. In our approach,

PSF weighting implicitly performs this task; thus, we can utilize the maximum aperture

consistent with a non-zero PSF (_,_,, = 20 ° for COS-B).

Then, instead of binning counts by phase to create a light curve histogram, we bin

weights by phase. Results for the two methods for the Crab Pulsar are shown in our

figure 2.

Figure 3 highlights the differences between the two approaches. Essentially, the tra-

ditional method uses a uniform probability function inside an acceptance cone that has

an energy dependent width. We have used, instead, a probability function which extends

over the full range of non-zero PSF, but binned into 3 energy ranges. This binning follows

COS-B tradition, could easily be made finer.

To allow direct comparison of the two methods, we plot the standard deviation for

each bin. To calculate the average background level, we have used the "fiat" portion of

the Crab pulsar's v-ray light curve between the second peak and the end of the period.

The resulting plot shows counts (weights) minus average background divided by stan-

dard deviation from background. We show results for all, and half of the Crab pulsar

observations of COS-B to demonstrate the performance of this technique for reduced

sampling times. The results in terms of maximum signal above background and total

integrated signal are given in table 1. While the exact numbers are dependent on bin

size, the improvement is dramatic in all cases.

This obvious increase in significance of detected pulses should also benefit the cluster

analysis algorithm of Buccheri, et al. (1988). We are currently investigating this and

other extensions to the general weighting technique.
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Figure 2: Shown are the weighted photon method (solid) and the standard count method

(dashed) of phase binnin 9 for the full COS-B data set for the Crab pulsar. Note the

dramatically improved signal for the wei#hted photon method. (Number of bins = 50.)
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Figure 3: Schematic drawing comparing the effective probability "weight" distribution for

traditional pulsar analysis (dashed} and our weighting function (solid) for a given energy

(,,, IOOMeV).
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